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Introduction

The field of prognostics has exploded in the last decade
and clinicians have been provided with numerous
tools to assist with medical decision-making in the
most evidence-based fashion.  Most of these tools
consist of nomograms, look-up tables and neural
network models.1-16  They address numerous prostate
cancer  (PCa) outcomes, which range from prediction
of biopsy outcome1 in men considered at risk of PCa
to prediction of death from hormone-refractory PCa.2

Choice of decision aids

The presence of several decision aids requires a careful
selection of tools that should be used for prediction
of the outcomes of interest.  The following criteria
provide an objective and systematic approach in that
complex process:
(1) Level of complexity represents an important

consideration.  Excessively complex models are
difficult to integrate in busy clinical practice.  For
example, lengthy logistic regression equations
require the use multiple functions and access to
scientific calculators. These are clearly
impractical in a busy clinical practice.  Neural
networks can accurately predict several
outcomes of interest.3-11  Despite high accuracy,
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Introduction:  Several nomograms have been developed
to predict PCa related outcomes.  Neural networks
represent an alternative.
Methods:  We provide a descriptive and an analytic
comparison of nomograms and neural networks, with

focus on PCa detection.
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However, the neural network methodology represents a
valid alternative, which should not be underestimated.
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the use of these models is restricted to centers
with adequate computer infrastructure, as
predictions require access to and expertise with
specific software.  Look-up tables, such as the
Partin Tables12 or nomograms represent user-
friendly alternatives.  In either paper based
format or within palm digital assistants, they are
ideally suited for busy clinical practice.12-16

(2) Accuracy represents the second consideration.
Current statistical methods offer the possibility
of assessing model’s predictive accuracy.
Usually, it is quantified using receiver operating
characteristics derived area under the curve and
is expressed as a percentage.  Values range from
0.5 to 1.0, where 0.5 is equivalent to a flip of a
coin and 1.0 represents perfect prediction.  No
model is perfect and acceptable accuracy ranges
from 70% to 80%.1-16  Accuracy should be
confirmed in either an external cohort or
internally, using statistical methods such as
bootstrapping.17,18

(3) Performance characteristics represent another
important consideration.  Accuracy indicates the
overall ability of the model to predict the
outcome of interest.  However, the overall
predictive accuracy does not inform the user on
how good or how bad the predictions may be in
specific patient subgroups.  Some models may
be ideally suited to predict in high-risk patients,
but may predict poorly in low risk patients.
Other models may predict well throughout the
range of predictions.

(4) Model generalizability is important, as patient
characteristics can vary.  For example, PCa
characteristics may not be the same in Europe as
in the United States.14  Prior to using a tool, the
clinician should ensure that it was validated in
patients with similar disease characteristics.

(5) Finally, when judging a new tool,19,20 one should
examine its accuracy, validity and performance
characteristics relative to established models, with
the intent of determining whether the new model
offers advantages relative to available alternatives.

Availability of several high quality predictive
models should encourage the clinician to adopt these
tools into everyday clinical practice.  Arguments
favoring such behavior include standardization of care
and of decision-making.  Moreover, nomograms
predict more accurately than clinicians.15  For example,
Specht and colleagues15 addressed the ability to predict
presence of axillary nodal metastases in women with
invasive breast cancer.  Nomogram predictions were
compared to 17 breast cancer specialists from the

Memorial Sloan-Kettering Cancer Center.  The
nomogram predictions were 18% (p=0.01) more
accurate than those of the expert clinicians.  This
implies that if predictions were made for 100
consecutive women, 18 would have been staged
incorrectly if expert clinician predictions were used
instead of nomogram predictions.  Thus, it appears that
nomograms have better ability to predict the outcomes
of interest than even expert clinicians.  It is conceivable
that the advantage related to the use of nomogram
predictions may be even more important if clinical
ratings were obtained from less expert clinicians.

In addition to methodological and practical
considerations, patient perspective also deserves a
mention when the use of most unbiased decision-tools
is considered.  Patients are becoming increasingly
aware of the existence of predictive tools.  This trend
is likely to increase in future years.  Patients are also
increasingly demanding to actively participate in
decision-making, which may in part be explained by
the following observations:
(1) Advances in therapeutics have offered numerous

treatment options and men no longer accept a
paternalistic physician-centered treatment
decision-making.  Instead, they demand to know
the efficacy and detailed side effect profiles of
treatment alternatives.

(2) The patient is increasingly recognized as a
pivotal player in medical decision-making.
Decisions can no longer be made by the
physician alone.  For example, the American
Urological Association suggests a detailed
informed consent prior to PSA testing.

(3) Health care ‘consumerism’ is a growing
phenomenon in North America and Europe.
Patients select what option of health care to
purchase, rather than passively receiving a given
treatment modality.

(4) Attention to bioethical considerations has greatly
increased over the past decade and has promoted
autonomous decision-making.

Thus, it may be postulated that increasingly greater
emphasis will be placed on standardized predictions,
which will further promote the development of new
tools and/or the improvement of existing predictive
tools.  These considerations may motivate clinicians
to adopt the use of decision-tools.  Their motivation
may also stem from the wealth of clinical data that are
used for the development and validation of each
model.  Most decision tools are based on thousands of
observations and it is virtually impossible to achieve
that level of clinical exposure and expertise on an
individual level.  Moreover, most clinicians do not have
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the capacity to systematically record or remember the
risk characteristics of several thousands of patients.
Additionally, unlike computers, clinicians are incapable
of systematically and cumulatively processing the
recorded risk characteristics and outcomes of historic
cases, to derive an estimated probability of outcome
for a new case at hand.  Thus, it may be expected that
the majority of physician-derived estimates are not as
accurate as computer-derived decision models.15

Despite this advantage, these tools are not meant to
replace clinical judgment.  Their input needs to be
weighed against the pros and cons of several other
considerations, such as comorbidity, case-mix, cost or
social, religious or emotional considerations.

Prostate cancer detection nomograms

Several authors developed nomograms for prediction
of prostate cancer on needle biopsy.  One is limited to
men with serum PSA values less than 4 ng/ml.21  This
restriction precludes inclusion of many men with PSA
values in excess of 4, in whom a biopsy may not

always be indicated due to age and/or comorbidity.
However, in these men it might be desirable to
quantify the probability of finding cancer.  Another
nomogram relies on ultrasound findings to determine
the probability of finding PCa.22  This requirement also
undermines the practical application of this tool.
Clinicians decide whether to perform a biopsy well
ahead of the ultrasonic assessment of the gland.  These
findings emphasize the importance of inclusion of
readily and routinely available predictor variables,
which represent a sine qua non of any predictive tool
developed for broad use.

To circumvent the limitations of previously
developed models, we recently developed a
nomogram predicting the probability of prostate
cancer on needle biopsy in men undergoing an initial
biopsy.1  This tool only requires the input of variables
that are routinely available at the time of a prostatic
evaluation, namely age, DRE findings, serum PSA and
percent-free PSA.  The combined predictive accuracy
of this model is 78% in the development cohort and
77% in the external validation cohort, Figure 1.  The

Figure 1a.  Initial biopsy nomogram based on four variables (age, DRE, PSA and %fPSA).
Instructions for physicians:  to obtain nomogram predicted probability of biopsy outcome, locate patient values
at each axis.  Draw a vertical line to the “Point” axis to determine how many points are attributed for each
variable value.  Sum the points for all variables.  Locate the sum on the “Total Points” line.  Draw a vertical line
towards the “P(PCa on needle biopsy)” - axis to determine the patient’s probability of presence of prostate cancer
on initial prostate biopsy.
Figure 1b.  Calibration plot of the initial biopsy nomogram.
Instructions for readers:  perfect prediction would correspond to the 45-degree line.  Points estimated below the
45-degree line correspond to nomogram over prediction, whereas points situated above 45-degree line correspond
to nomogram under prediction.
DRE: digital rectal examination (1=suspicious, 0=normal)
PSA: prostate specific antigen
perc.fPSA: percent free prostate specific antigen
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benefit related to the use of this tool resides in its
ability to consider the simultaneous contribution of
four variables.  Its multivariate performance is
appreciably higher than that of PSA (64%), age (52%),
DRE (62.9%) or %fPSA (73%) alone.  These
substantially lower predictive accuracy estimates
clearly demonstrate the benefit related to
consideration of all four variables.

Besides the combined contribution of the four
variables, the nomogram users can ascertain the
relative importance of each predictor variable, as all
risk factors are graphically depicted in the form of ‘risk
axes’.  For example, assessment of the nomogram axes
indicates that the effect of a suspicious DRE, as well
as the effect of serum PSA in excess of 50 ng/ml has a
limited effect on the probability of diagnosing prostate
cancer on needle biopsy.  Suspicious DRE contributes
to 20 risk points.  Similarly, PSA of 50 ng/ml
contributes to approximately the same number of risk
points.  Conversely, %fPSA can contribute to as many
as 100 risk points.  Thus, the effect of %fPSA is five-
fold stronger than that of the other predictors.  Such
information cannot be derived from look-up tables or
from neural networks.

Moreover, assessment of nomogram axes can
situate the user with regard to the magnitude of the
effect associated with each of predictor.  For example,
the PSA risk axis indicates a limited magnitude of
the effect of PSA.  Men with PSA values between 10
ng/ml and 15 ng/ml are given 10 risk points.
Suspicious DRE and age of 75 years both contribute
approximately 20 risk points.  These contributions
are modest at best, in the light of %fPSA, where a
value of 10% contributes 90 risk points.  The above
example illustrates how useful the graphical
display of nomogram axes can be with regard
to familiarizing the clinician with differential
contribution of key risk factors.

Neural networks

The graphical display of risk factors, which allows a
clear and user-friendly depiction of the risk variables,
distinguishes nomograms from neural networks,
where graphical display cannot be provided in paper
format.  Although, the structure of neural networks
can be presented in schematic form, Figure 2, the
actual effect of the input variables on the output
cannot.  This is due to the numerous interactions that
are allowed, when data are processed from the input
units towards hidden neuron layers and then
eventually to one or several output units.  Neural
networks predicting the outcome of needle biopsy
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have been generally limited to one layer of hidden
neurons.  Two investigators relied on ‘several’ layers
of hidden neurons.3,4

Use of several layers of hidden neurons renders
the computational data manipulations highly complex
and lacks transparence.  Multiple interactions are
allowed between input variables at each level.  These
are weighed to promote the most accurate prediction
of the outcome of interest, for example of presence of
cancer on needle biopsy.  At each hidden neuron,
binary outputs are transmitted to the next level of
hidden neurons.  These resemble multiple outputs
within a logistic regression model.  Interactions
between these outputs, which again can be weighed
to further promote accuracy, increase the complexity
of the model.  The process contributes to highly
accurate prediction of the outcome of interest, which
in several reported neural network models closely
approximates the 85%-95% range.  Although accuracy
is of key importance, models that underlie predictions
need to be tested before their discriminant ability
can be taken at face value.  Unfortunately, lack of
familiarity with biostatistical considerations
frequently severely undermines the validity of
reported predicted accuracy estimates, which are
exaggerated and reported in a biased and
methodologically incorrect way.  Thus, despite good
intentions many investigators report spuriously high
ability to predict the outcome of interest.

Head-to-head comparison of a neural
network and a nomogram

To substantiate the claim that neural network
predictions are less accurate when they are subjected
to strict external validity tests, we compared the ability
to predict presence of cancer on biopsy between our

Figure 2.  Schematic architecture of an artificial neural
network to predict prostate cancer on initial biopsy.
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nomogram and a neural network model that was
made available by investigators at the Charité
Hospital in Berlin, Germany.5  The nomogram is based
on four input variables, namely age, digital rectal
examination findings, serum PSA and %fPSA and its
maximum predictive accuracy was estimated at 78%.1

The neural network additionally includes prostate
volume as a risk variable and its predictive accuracy
has been estimated at 84%.  Prostate volume
represents an important predictor of PCa risk on
needle biopsy in several contemporary analyses.23-26

Thus, its inclusion should bias the ability of the
network to predict more accurately than the
nomogram, where this variable is not considered.
Moreover, unlike the neural network, the nomogram
variables are not allowed to interact with one another,
which should further undermine the predictive ability
of the nomogram.

Both models were tested on a cohort of 4093
patients subjected to at least 8-core initial biopsy.
Despite these à priori disadvantages, our results
have indicated that the nomogram (70.6%) was 3.6%
more accurate than the neural network (67.0%).
Both models predicted less accurately than in the
original studies, where they were described.1,5  The
decrease in predictive accuracy relative to original
data was related to development of both tools on
populations subjected to virtually exclusive sextant
biopsies, while their head-to-head comparison was
performed on a cohort exposed to extended biopsy
schemes.

Besides overall model accuracy, we explored the
performance characteristics of the nomogram and
then of the neural network, as these are instrumental
when the decision to adopt one tool versus another.
As shown in Figure 3A, the performance
characteristics of the nomogram virtually paralleled
the ideal 45-degree prediction line.  Conversely, the
neural network demonstrated important departures
from ideal predictions, Figure 3B, which were
manifested by severe under estimation throughout the
range of predicted probabilities.  The most important
departures were recorded for predicted probabilities
between 20% and 80%.

Taken together, our comparison demonstrated that
neural networks do not exceed the ability of logistic
regression models to predict the outcome of interest.
Moreover, we have shown that the performance
characteristics of the nomogram, which consist of a
comparison between predicted and observed rate
of PCa on needle biopsy were far superior to the neural
network.  This example of a head-to-head comparison
between a nomogram and a neural network shows

Figure 3.  Local regression nonparametric smoothing
plots which demonstrate performance of external
validations of a previously published initial biopsy
nomogram1 (A) and of a previously published
artificial neural network5 (B) to predict initial biopsy
outcome.
Figure 3a.  External validation (n=4093) of the
previously published four variables (age, DRE, PSA,
%fPSA) sextant nomogram1 for prediction of prostate
cancer in men exposed to initial biopsy, where X-axis
represents predicted probability and Y-axis represents
observed fraction with evidence of prostate cancer.
Figure 3b.  External validation (n=4093) of the
previously published artificial neural network5 (age,
DRE, PSA, %fPSA, prostate volume) for prediction of
prostate cancer in men exposed to initial biopsy where
X-axis represents predicted probability and Y-axis
represents observed fraction with evidence of prostate
cancer.
Perfect predictions correspond to the 45-degree line.
Points estimated below the 45-degree line correspond
to nomogram over prediction, whereas points situated
above 45-degree line correspond to nomogram under
prediction.
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that nomograms appear to be more accurate and
appear to be associated with better performance
characteristics.  This directly contradicts several
urological publications, where the accuracy of neural
networks was substantially higher than that of
nomograms.  Moreover, this example illustrates some
of the concerns that experts in prognostics have voiced
about the true predictive ability of neural networks.

Nonetheless, our findings and their interpretation
are not meant to suggest that the neural network
methodology should be abandoned.  Instead, they
indicate the need for methodologically sound
application and critical appraisal of this approach.

Concerns with current neural network
applications

Several important problems have been identified with
the methodology of contributions addressing neural
network models.  The potential for the emergence of
these problems has been signaled as early as in 1977,
when statistical packages, such as SPSS, SAS and
others became widely available for non-specialists.27

Despite these early warnings, a recent review of
existing neural networks for prediction and diagnostic
classification in oncology found numerous crucial
methodological mistakes in 43 identified articles.28

These were summarized as (1) biased and/or
inefficient estimation, (2) overfitting and fitting of
implausible functions, (3) incorrect or missing
description of the complexity of the network, (4) use
of inadequate statistical competitors or insufficient
statistical comparisons, and (5) naive and
inappropriate application to survival data.
(1) Mistakes in the estimation of predictive accuracy

represent without doubt the most dangerous flaw
of many neural networks in oncology.  These relate
to inappropriate use of data sets to estimate the
predictive ability of these models.  For example,
most reports divide the data sets into learning and
validation sets.  Such methodology is appropriate,
when the accuracy of a regression models is tested.
Neural networks behave differently.  Therefore,
validation sets demonstrate excessively optimistic
predicted accuracy, relative to regression models.
The degree of optimism has been estimated at
between 9% and 13%.28  Thus, a model may be
reported to predict accurately 90% of the time,
while in reality only 80% of predictions are correct.

Appropriate assessment of predictive accuracy
requires the use of test sets. These can be derived from
the original cohort.  However, such approach results
in fewer observations that can be used for learning and

validation.  Alternatively, cross-validation techniques
can be used, where the test set is generated from a
randomly drawn proportion of the population.
Another test set can then be randomly identified and
the process may be repeated several times.  Each time
the predictive accuracy of the neural network is
determined.  Once all repetitions have been completed,
an average predictive accuracy is determined.  This
method is more sophisticated than simple splitting of
the dataset between learning, validation and test sets.
It allows testing of the unbiasedness of the model on
substantially larger test sets, relative to when the cohort
is split into three subsets.  The most efficient validation
may be provided by computer-intensive resampling
technique called bootstrapping.18  This methodology
replicates the process of test set generation from an
underlying validation set by drawing sample sizes with
replacement from the original validation dataset.  Each
resample is of the same size as the original validation
set.  Use of resampling maximizes the efficiency of
predictive accuracy testing.  Thus, instead of dividing
the population between three subsets, only the learning
and validation sets are required.  Use of cross validation
or bootstrapping techniques may allow fewer instances
of overfitting, where neural networks learning sets rely
on few dozens observations and numerous input
nodes.  It is of note, that regression models do not
require a test set.  Instead, their validation may be
achieved either using the split sample or cross-
validation methodologies.  Finally, resampling with
replacement represents a frequently used and efficient
validation approach of regression models.
(2) Overfitting may undermine the validity of neural

networks, which have the ability to closely reflect
the underlying data.  For example neural
networks, which are based on few observations
but numerous hidden units, have a tendency to
result in implausible functions to describe the
relation between the input nodes and the output
node.  Such models may be associated with
spuriously high accuracy, which may be difficult
to confirm in a test set.  Despite great ability to
replicate the relations between input and output
nodes, the neural networks do require between
5 and 10 observations for each parameter to be
estimated.  Thus, readers are cautioned about
taking at face value the predictive ability
of neural networks that bypass that key
consideration.

(3) Incorrect or incomplete description of the neural
network represents a common limitation in the
ability of the reader to independently assess the
properties of the network at hand as well as these
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of the learning, validation and testing steps.  For
example, it is not uncommon that multiple
hidden layers are mentioned, without specifying
how many.

(4) Excessively optimistic performance of neural
networks may be due to comparisons with
inappropriate, insufficient or inadequate
statistical competitors.  For example, neural
networks are frequently compared to logistic
regression models.  Although we have
demonstrated that logistic regression models can
favorably out-compete neural networks, this is
not invariably the case.  The advantage of neural
networks resides in their complexity relative to
straightforward regression models, which rely
on linear relations between predictors and the
outcome of interest.  In order to provide
comparable conditions, regression models
should be fitted with multiple interaction terms
and with cubic as well as quadratic predictor
terms.  Such methodology would results in
comparable ability of the predictors to interact
with one another in a non-linear fashion, as in
neural networks.

(5) The above methodological problems are
compounded by inappropriate applications of
neural networks.  For example, the statistical
assumptions governing neural networks
generally do not allow the use of censored data.
Thus, neural networks are not amenable to
modeling of survival data.  Many investigators
have attempted to circumvent this
methodological limitation by either ignoring
censored cases, or omitting censored cases, or
imputing censored cases, or finally by using time
to event data as an additional input.  All these
approaches are methodologically flawed and are
known to results in biased estimate of the
outcome of interest.

Finally, neural networks have been popularized in
the medical literature by over inflated praises, such
as ‘ability tom learn...makes them formidable tools in
the fight against cancer,29 and ‘neural computation
may be as beneficial to medicine and urology in the
twenty-first century as molecular biology has been in
the twentieth’.30  Despite these praises, neural
networks have made little difference in the diagnosis
or management of localized PCa, despite their
introduction in the early 1990s.31  Besides severely
limited availability, practical considerations related to
the misuses of neural network methodology have
without doubt contributed to the observed marginal
use of these tools in clinical practice.

Conclusion

Prediction of several PCa related outcomes can be
achieved with nomograms, look-up tables or neural
networks.  While look-up tables represent a
simplification of logistic regression, nomograms and
neural networks represent two distinct
methodological approaches towards prediction of
clinical outcomes.  Nomograms offer several
advantages.  They allow users to understand the
underlying effect of risk factors on the outcome of
interest.  Their predictive accuracy and performance
characteristics can be easily tested and graphically
displayed.  Finally, their accuracy and performance
characteristics are at least as good as these of neural
networks.  These properties have resulted in the use
of nomograms in clinical practice across several
continents.32,33  Conversely, neural networks are less
popular.  Despite numerous methodological flaws in
existing neural network models, this approach
represents a valid alternative to nomograms, as long
as its methodology is used with equal scrutiny to that
employed in nomogram applications.34
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