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Introduction:  Interstitial cystitis (IC) is a potentially severe
and debilitating condition of the bladder.  Numerous factors
have been implicated in its pathogenesis.
Materials and methods:  A literature review was
conducted on the following topics:  urothelium, mucosal
lining, interstitial cystitis, bladder, and glycosaminoglycans.
Results:  A commonly proposed cause for IC is a defect
or alteration in the bladder surface leading to increased
permeability to noxious urinary solutes and ultimately

to tissue inflammation and neurogenic upregulation.
Support for this concept is drawn from studies of the
structure, function, and composition of the bladder
surface.  The cause(s) of this alteration is not known,
although recent research has implicated changes in the
levels of growth factors and/or compounds that protect
against irritants and potentially “toxic” factors.
The etiology of IC is likely multifactorial.
Conclusions:  Alterations of the bladder surface are
observed in IC, and may play an important role in the
etiology of this condition.

Key Words:  interstitial cystitis, bladder, urothelium,
mucosal lining, glycosaminoglycan

described the condition as tic doloureux of the bladder.2

Later, in 1907, Nitze was probably the first to codify the
symptomatic features of IC and named it cystitis
parenchymatosa.3  Hunner popularized the concept in
1914, calling it the ‘elusive ulcer.’4  Increasing awareness
of IC in recent years has led to more frequent diagnosis
of this condition.5,6  Also, the nomenclature has evolved
to include painful bladder syndrome (PBS) along with
IC—IC/PBS—to describe the condition.7-9

The pathogenesis of IC/PBS is likely
multifactorial.3,10-12  Causal factors that have been
suggested include increased permeability of the
bladder epithelium to noxious urinary substances,
neurogenic upregulation, mast cell activation,
autoimmune disorders, ischemia, chronic infection,
and decreased levels of urinary growth factor.3,10-12

These factors may be interrelated.  One theory
regarding the pathogenesis of IC/PBS that has gained
considerable acceptance is that defects in the mucosal
lining of the bladder epithelium lead to abnormally
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Introduction

Interstitial cystitis (IC) is a potentially severe and
debilitating bladder disorder that is characterized by the
symptoms of pelvic pain; urinary urgency and
frequency; nocturia; and, frequently, dyspareunia.1  In
one of the earliest reports of IC, in 1836, Joseph Parrish



© The Canadian Journal of UrologyTM; 14(4); August 20073600

The role of the bladder surface in interstitial cystitis/painful bladder syndrome

enhanced permeability.10  Although the concept of
enhanced bladder permeability in IC/PBS is not
without controversy, consistent evidence suggests that
increased permeability, or bladder urothelial
dysfunction, is a feature of IC, and may initiate the
cascade of events that produce the typical symptoms
of IC/PBS.13,14

Normal bladder epithelium

Urothelial structure
The bladder is lined with a transitional cell epithelium
that is highly impermeable to water and solutes (other
than active transport of necessary substances), and
serves to maintain the composition of urine during
bladder filling.15  The normal bladder urothelium is
three to seven cells thick, and consists of three distinct
cell layers: a basal cell layer that is mitotically active,
one or more intermediate cell layers, and a superficial
layer of terminally differentiated “umbrella cells.”15-17

The umbrella cells are large, polygonal,
multinucleate cells that are interconnected with tight
junctions.15  Specialized apical membranes allow the
bladder to stretch during filling and then contract
upon emptying.  The outer luminal leaflet of the
umbrella cells contains plaques of proteins called
uroplakins, interspersed with hingelike regions that
form ridges on the surface of the bladder epithelium.15

It is thought that these hinges flatten out as the bladder
fills, and then submembrane vesicles containing
uroplakins fuse with the apical membrane, further
expanding the bladder surface area.  After the bladder
empties, the hinges refold and endocytosis removes
excess membrane from the apical region.15

Permeability barrier function
Movement of substances between the urine and
plasma compartments is restricted by tight junctions
between the umbrella cells of the bladder epithelium
that, along with ion pumps, play an important role in
decreasing epithelial permeability.15  Tight junctions
are composed of a complex protein scaffold linking
adjoining cell membranes with the intracellular
cytoskeleton.  Transmembrane proteins include the
tetraspan proteins occludin and members of the
claudin family, which are responsible for the unique
ion selectivity and permeability in different tissues.18,19

The cytoplasmic protein zonula occludens-1 (ZO-1)
link the junction with the actin cytoskeleton.  In
mammalian bladder epithelium, actin and ZO-1
colocalize at the apicolateral boundary around the
periphery of the umbrella cells, demonstrating the
presence of tight junctions in this area.18  Bladder

epithelium tight junctions also contain claudins-4, -8,
and -12, which may confer the high-resistance and low
permeability properties of this tissue.18

In addition to the permeability barrier established
by apical cell tight junctions, the mucous layer
covering the surface of the epithelium also plays a role
in maintaining the impermeability of the bladder
epithelium.20-23  In the bladder mucosal lining, highly
anionic glycosaminoglycans (GAGs) with a marked
avidity for water are present at high densities.20,21

These GAGs are likely produced by the bladder
urothelium itself,24 but there is also evidence to
suggest that GAGs may be produced from cells lining
the renal tubule and other locations along the urinary
tract, as well as in the glomeruli.25  The GAGs bind
tightly to water, creating a mucous biofilm that
essentially functions as an impermeable barrier to
solutes, Figure 1.20,21,26

Structure and composition of the bladder mucosal
lining
Ultrastructural and biochemical studies have shown the
presence of a bladder mucosal lining composed of GAGs,
proteoglycans, and glycoproteins.21,22,27,28  Table 1 shows
the GAG composition of normal bladders taken at
autopsy from patients less than 40 years of age.29  The
composition of GAGs in the mucosal layer changes with
age and hormone status.25,30,31  In the bladder mucosal
lining, GAGs are linked to core proteins that, in turn,

Figure 1.  Schematic of the bladder urothelium.
GAG = glycosaminoglycan. (Reproduced, with
permission, from Hurst RE. Structure, function, and
pathology of proteoglycans and glycosaminoglycans
in the urinary tract. World J Urol 1994;12(1):3-10.
©Springer-Verlag 1994.)
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purinergic P2X3 receptors, signaling bladder fullness
and pain.36,37  Mice that lack the P2X3 gene exhibit
bladder hyporeflexia, suggesting that this epithelial-
neural signaling is necessary for bladder function.38

The urothelium also expresses P2X and P2Y receptors,
and autocrine signaling via stretch-induced ATP may
trigger the vesicle exocytosis that contributes to
bladder expansion during filling.39  Multiple putative
mediators (e.g. ATP) and peptides have been
identified in the afferent pathways of the bladder,
including substance P, neurokinin A, calcitonin gene–
related peptide (CGRP), vasoactive intestinal peptide
(VIP), and enkephalins.40-42  In particular, substance P

TABLE 1.  Glycosaminoglycan composition of normal bladder

Epithelium/ Muscle Full thickness
submucosa bladder

Hyaluronic acid, % 32.4 ± 3.2 16.9 ± 6.8 22.6 ± 14.5

Heparan sulfate, % 14.2 ± 3.6 35.4 ± 5.5 32.8 ± 6.8

Dermatan sulfate, % 46.0 ± 3.9 38.7 ± 2.4 36.1 ± 1.2
Chondroitin sulfate, % 7.5 ± 1.8 9.0 ± 1.5 8.5 ± 1.3

Total dry weight of 6.9 ± 2.5 3.3 ± 1.1 4.0 ± 1.9
purified GAGs, µg/mg
GAGs = glycosaminoglycans.
Adapted with permission of Elsevier, from De Klerk DP. The glycosaminoglycans of human bladder cancers of varying
grade and stage. J Urol. 1985;134(5):978-981.

are perpendicularly attached to the surface of the
transitional epithelium.21,26  Glycosaminoglycans bound
to proteoglycans are held apart by their highly anionic
charge, with water trapped between their spaces and
held in place by electrical attraction.21,26  Formation of a
tightly bound impermeable water layer requires that
GAGs be distributed at a high density in the space
throughout the glycocalyx.16,21  Current calculations
suggest that stacks of GAG molecules 5 to 60 deep must
be present in the area covered by a single chain on the
surface of normal bladder epithelium.16,21  The presence
of both proteoglycans and glycoproteins is required to
maintain the impermeability properties of bladder
epithelium.16

Neurosensory properties of bladder urothelium
The bladder urothelium has traditionally been
considered a passive barrier.  However, recent research
shows that the urothelium exhibits neurosensory-like
properties and may have an active role in regulating
bladder function, Figure 2.32  Bladder urothelial cells
express several receptors and ion channels found on
sensory neurons, including receptors for bradykinin,
purines, norepinephrine, and acetylcholine, as well
as the receptor for capsaicin: transient receptor
potential vanilloid subtype 1 (TRPV1).32-34  These
receptors are functional and active.34  For example,
urothelial cells in culture respond to exogenously
applied capsaicin with a rise in intracellular Ca levels
and release of the neurotransmitter nitric oxide (NO),
whereas these responses were not present in TRPV1
null mice.32,35

The bladder urothelium actively communicates
with bladder afferent nerves as well as neighboring
cells. Upon bladder stretching, urothelial cells release
adenosine triphosphate (ATP), which activates a
subpopulation of bladder afferents expressing the

Figure 2.  Schematic of neurosensory function of
bladder epithelium.
TRPV1 = transient receptor potential vanilloid subtype
1; ACh = acetylcholine; ATP = adenosine triphosphate;
M = muscarinic receptor; P = purinergic receptor.
(Reproduced, with permission, from Birder LA. More
than just a barrier: urothelium as a drug target for
urinary bladder pain. Am J Physiol Renal Physiol
2005;289(3):F489-F495. ©American Physiological
Society 2005.)
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and CGRP can function as neurotransmitters in
sensory nerves.41  It is, therefore, possible that
urothelial cells are capable of sensing and responding
to their environment, and signaling in both an
autocrine and paracrine manner.

Role of the bladder surface in IC/PBS

Increased permeability in IC/PBS
Abnormally enhanced permeability across the
urothelium, or bladder urothelial dysfunction, has been
proposed as a major cause of the typical symptoms of
IC/PBS: urgency, frequency, and pelvic pain.14,16,43,44

One of the first studies to provide evidence for an
association between bladder urothelial dysfunction and
IC compared absorption of concentrated urea instilled
in the bladder of 56 patients with IC and 31 normal
subjects.14  Forty-five minutes after instillation, patients
with IC had absorbed significantly more urea from the
urine compared with normal subjects (25% versus 4.3%,
p < .005, Figure 3).14  In a study using a mouse model of
IC, an increase in urothelial permeability was shown to
accompany development of features similar to human
IC.45  An increase in bidirectional urothelial permeability
was suggested by the findings of Erickson et al, who
used a highly sensitive radiometric assay to show an
increase in urinary hyaluronic acid (HA) among patients
with IC compared with normal controls.46  Mean urinary
HA concentrations (normalized to urinary creatinine)
were 674 ± 220 ng/mg creatinine in the IC group (n =
17) and 446 ± 220 ng/mg creatinine (p = .0019) in the
control group (n = 17).46  As HA is normally localized in
the subepithelial connective tissue, increased
concentrations of HA in the urine suggest increased

leakage across the epithelium in patients with IC.46

Additional studies comparing patients with IC to
controls demonstrated urinary hyaluronic acid levels
elevated 3- to 4-fold.12  Moreover, the urinary uronate
profile demonstrated alterations, with controls exhibiting
more high-molecular-weight sulfated GAGs and
patients with IC exhibiting more small oligosaccharides.
The concept that the bladder epithelium is abnormally
permeable in IC/PBS is not universally supported,
however.  One study often cited as evidence that
permeability is unaltered in IC measured serum
concentrations of the radioactive tracer 99mtechnetium-
diethylenetriaminepentaacetic acid (99mTc-DTPA)
following intravesical instillation in patients with IC (n
= 10) and in age-matched controls (n = 9).47  This study
reported no significant difference in absorption between
patients with IC and control subjects, although the mean
DTPA absorption was 83% greater in patients with IC.
Given the low (33%) statistical power of this study due
to the small number of subjects, results are open to
interpretation.48

Anatomic changes that can be viewed
microscopically have been evaluated to determine if
there is a visible change in the bladder surface.  The
exact location of the defect allowing increased
permeability in IC/PBS has not been established.  It
may lie in the tight junctions of the epithelium, the
overlying mucosal layer, or both.15  In a feline model
of IC, scanning laser and electron microscopy of
urothelial biopsies show areas of denuded epithelium,
in which the umbrella cells are missing and the
underlying intermediate layer, which lacks tight
junctions, is exposed.49  The same pattern has been
observed in bladder biopsies from patients with IC.50

The expression of tight junction proteins is altered in
bladder epithelial cells cultured from biopsies from
patients with IC.51  Although visual changes have been
described, it is the physiological changes that are often
reported as demonstrating the permeability
abnormality.52

Changes in the structure or composition of the
bladder mucosal lining may play a key role in the
increased epithelial permeability associated with
IC.14,20,26  Urinary GAG excretion is reduced in patients
with IC.  In one study, urinary GAG levels in patients
with IC were half that of normal subjects, and only
slightly lower than that of spinal cord injury patients.16

In bladder biopsies, GAGs have a well-ordered
arrangement in normal bladder epithelium, but are
disrupted in IC epithelium.53

Studies using electron microscopy to image the
mucosal layer have produced equivocal results.  Using
transmission electron microscopy (TEM), Dixon et al

Figure 3.  Urea absorption in patients with IC versus
normal subjects. IC = interstitial cystitis. (Adapted,
with permission, from Parsons CL, Lilly JD, Stein P:
Epithelial dysfunction in nonbacterial cystitis
(interstitial cystitis). J Urol. 1991;145(4):732-735.
©Elsevier 1991.)
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found no significant differences in the appearance,
thickness, or distribution of the bladder mucosal lining
between patients with IC and normal subjects.54  Similar
findings were reported by Nickel et al using a technique
in which the polysaccharide component of the mucosal
lining is stabilized by specific antibodies prior to TEM.55

In another study, Anderstrom et al compared
transurethral resection biopsies from patients with IC
and those with stress incontinence, using scanning
electron microscopy.50  In this study, although
specimens from both patient cohorts showed defects
in the bladder mucosal lining, the areas with a disrupted
or absent mucosal layer were larger in specimens from
patients with IC than in those with stress incontinence.50

Scanning electron microscopy allows for the
examination of a larger surface area than TEM.

It has been theorized that once epithelial
permeability is enhanced, potassium and other
irritants diffuse into the bladder epithelium at toxic
levels, causing depolarization of the sensory nerves
and muscles and ultimately tissue injury and
destruction.56-60  The role of potassium in the
pathogenesis of IC was examined in a study
comparing 24-hour urine potassium levels in 30 newly
diagnosed patients with IC who had not yet received
treatment and 47 normal subjects.61  Twenty four–hour
urine potassium levels in the patients with IC were
significantly lower than those in patients without IC
(31.0 mEq/l versus 46.2 mEq/l, p = .01).61  These
findings are consistent with increased potassium
absorption and enhanced epithelial permeability in
the bladders of patients with IC.61

Studies have examined the effects of replacing a
damaged mucosal layer with GAG substitutes.
Normal rabbit bladders treated with protamine, a
protein that binds to GAGs and interferes with their
function, exhibited increased movement of urea and
calcium across the bladder epithelium.  This effect was
reversed by administration of pentosan polysulfate
sodium (PPS), a semisynthetic heparinlike compound
that chemically and structurally resembles GAGs.20,62

A study on humans produced similar results.63  In this
study, 27 normal volunteers had urea instilled in their
bladders before and after treatment with protamine
sulfate.  Urea loss from the bladder was significantly
increased following treatment with protamine (5%
before versus 22% after; p < .02), but this effect was
significantly reversed following treatment with the
exogenous GAG substitute heparin (10%; p = .04).63

Intravesical instillation of protamine provoked the
symptoms of urgency and pain, which were
exacerbated by urea instillation and relieved
by heparin.

In a randomized, double-blind, placebo-controlled
study that evaluated the effects of PPS in 148 patients
with severe IC refractory to conventional treatment,
32% of patients who received the drug over a 3-month
period experienced significant overall symptom
improvement (as measured by the patient’s global
assessment of at least a 50% decrease in symptoms),
compared with only 16% of those who received
placebo (p = .01).44  In a 32-week, randomized, double-
blind study, patient response increased steadily over
the duration of therapy.  Among patients who received
300 mg/day PPS (n = 128), the percentage of
responders (≥ 50% improvement on Patient’s Overall
Rating of Symptoms Index [PORIS]) increased from
34% at 8 weeks to 50% at 32 weeks.64  Intravesical
instillation of heparin also resulted in symptom relief
for patients with IC.  In an open-label study, more than
half (56%) of the 48 patients studied achieved a 50%
or greater improvement in symptoms after 3 months
of therapy with intravesical heparin (10,000 units in
10 ml sterile water 3 times per week).65  In a small
trial, intravesical instillation of chondroitin sulfate also
produced some symptom relief.66  One interpretation
of these clinical studies is that GAG-replacement
therapy with PPS or heparin helps to repair and heal
the permeability defect in the bladder of patients with
IC/PBS.

It is unclear whether abnormally enhanced
permeability across the bladder epithelium is a cause
or an effect of IC.3  In IC, the bladder epithelium either
fails to establish an impermeable water layer or is
structurally compromised.14,20  Abnormally enhanced
permeability across the bladder epithelium may be due
to several factors, such as genetics, downregulation of
proteoglycan biosynthesis by either viral infection or
urine mediators, or chronic neutralization of the
surface charge by cationic proteins.16  Failure of the
stroma to provide the proper peptide signal for growth
and differentiation may also contribute to enhanced
permeability in the bladder epithelium.16

Role of GP51
Reduction in levels of a glycoprotein known as GP51
(previously termed GP1) has been observed in patients
with IC.  Immunohistochemical staining of bladder
epithelial tissue from patients with IC versus controls
showed decreased or absent staining reactions for
GP51 among biopsies of patients with IC (61% and
35%, respectively).67  In another study, levels of GP51
were significantly decreased in the urine of patients
with IC compared with normal controls  (p = .008).68

These results indicate that levels of GP51 may be a
useful clinical marker for the diagnosis of IC.

TEICHMAN AND MOLDWIN
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Role of Tamm-Horsfall protein in IC/PBS
A potential factor contributing to the loss of epithelial
impermeability in IC is the chronic neutralization of
the anionic bladder mucosal lining by cationic toxic
factors in the urine.16,69  Normal human urine contains
cationic factors that are toxic to both bladder epithelial
cells and smooth muscle cells.  Unregulated, these
factors could, potentially, interact with the anionic
bladder mucosal lining and impede its ability to bind
water to the bladder surface, increasing epithelial
permeability and permitting urinary solutes to leak
into the subepithelial space.69  Healthy individuals
may possess urinary defense mechanisms that prevent
cationic toxic factors from interacting with the bladder
mucosal lining, thereby preserving the impermeability
of the bladder epithelium.69

Tamm-Horsfall protein (THP), a protein found in
normal urine, may form a complex with cationic toxic
factors, capturing potentially injurious factors before
they can damage the bladder mucosal lining.69,70  The
potential protective role of THP was demonstrated in a
study that compared cytotoxic activity in low molecular
weight urine fractions pretreated with THP versus that
in untreated urine.69  Tamm-Horsfall protein–treated
urine fractions had significantly lower cytotoxicity levels
compared with untreated urine fractions in both
epithelial cells (7% versus 89%, p < .001) and smooth
muscle cells (8% versus 70%, p < .01).  These findings
suggest that THP may play a key role in regulating the
balance between cationic toxic factors in the urine and
defense mechanisms in the bladder.  Impairment of the
cytoprotective capacity of THP may disrupt this balance
by allowing cationic toxic factors to interact with the
bladder mucosal lining, thereby contributing to the
development of IC.69,70  A recent study showed that PPS
can neutralize the effect of toxic urine factors in a similar
fashion to THP.71

Role of antiproliferative factor
Antiproliferative factor (APF), a modified frizzled 8–
related sialoglycopeptide, is a peptide in the urine of
patients with IC.72,73  It is produced specifically by
bladder epithelial cells in patients with IC, and has been
shown to inhibit bladder epithelial cell proliferation.73,74

Cultured bladder epithelial cells from subjects with IC
exhibit significantly reduced rates of proliferation
compared with cells from control subjects (p = .02 by
Day 2 after serum starvation and p < .0005 by Day 3).75

Although its mechanism of action has not been fully
elucidated, evidence suggests that APF may induce
distinct changes in the cell cycle and cause a G2/M phase
blockade.72  Antiproliferative factor has also been shown
to decrease levels of urinary heparin-binding epidermal

growth factor–like growth factor (HB-EGF) and to
increase levels of epidermal growth factor (EGF),
reflecting the altered levels of these growth factors seen
in patients with IC.72,74  When APF is applied to normal
bladder epithelial cells in culture, changes occur that are
similar to those seen in cells from patients with IC,
including increased paracellular permeability, decreased
expression of tight junction proteins, and changes in the
expression of other proteins involved in cell adhesion.51

These results support a causal role for APF in the etiology
of IC, by contributing to abnormal permeability.  In the
future, a test to detect urine biomarkers, such as APF,
HB-EGF, and EGF, might be developed for use in the
clinical setting to diagnose and monitor IC.74

Role of surface sensitization
The recent discovery that the bladder urothelium
exhibits neurosensory properties has led to the
suggestion that abnormalities in urothelial signaling
may contribute to the development of IC/PBS.  Urine
from patients with IC contains significantly more ATP
than urine from non-IC patients.76  Furthermore, ATP
release during stretch is augmented in cultured
bladder epithelial cells from patients with IC, and
these cells exhibit more robust responses to exogenous
ATP.76,77  Urothelial cells also exhibit upregulated P2X
receptors, which are involved in signaling bladder
fullness and pain.78,79  In sensory neurons, ATP can
potentiate the responsiveness of capsaicin receptors.
Some investigators have proposed that ATP release
upon tissue injury may trigger sensitization and
hyperalgesia, along with increased sensations of
urgency and pain.80

Other theories of IC pathogenesis

The pathogenesis of IC/PBS is likely multifactorial, and
a number of factors other than bladder urothelial
dysfunction, such as autoimmunity, neurogenic
inflammation, and mast cell activation, may be
involved.3,10-12  The concept that IC/PBS may be an
autoimmune disorder largely stems from its
predominance in women; noninfectious inflammatory
changes, concomitance with other autoimmune
disorders, such as systemic lupus erythematosus,
rheumatoid arthritis, and ulcerative colitis; and other
similarities to immunologically mediated diseases.11,81

However, numerous serologic and histologic studies
have failed to provide evidence that IC is an autoimmune
disorder, and the lack of specificity of immunologic
bladder responses in IC suggests that immune responses
may be secondary to bladder inflammatory damage
rather than the primary cause of the condition.11,81
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The theory that IC/PBS is caused by neurogenic
inflammation is based on observations of
neuroproliferation and chronic perineuritis in the
bladder wall as well as on the symptom complex of pain,
frequency, and urgency that typically accompanies the
condition.11,82  Treatments that are effective for patients
with neuropathic pain disorders (such as amitriptyline
and gabapentin) have also been shown to provide
symptom relief in patients with IC, although these agents
are not approved for this indication.83,84  It has been
speculated that neurogenic inflammation may be a
primary pathogenic factor in the development of the
condition, leading to the production of neuropeptides
and mast cell mediators that can cause inflammation,
tissue damage, and fibrosis.11

Another explanation for the data is that neurogenic
inflammation represents a protective response to
noxious stimuli.  In the normal response to injury,
edema and the recruitment of local defense cells help
to combat and dilute toxins and bacteria.40  In IC/PBS,
neurogenic inflammation can become maladaptive.
Nerve growth factor (NGF) levels are elevated in
patients with IC, and NGF is one of the early genes
upregulated in IC.85,86  The increase in NGF expression
in cystitis may explain the neuroplasticity and long-
term effects of pain after the original inciting agent
and inflammation have abated.87-89

Compelling evidence suggests that mast cells play
an important role in the pathogenesis of IC.11  Multiple
studies have shown that mast cells occur in increased
numbers in the bladder mucosa and epithelium and
in the detrusor muscle bundles of the bladder in
patients with IC, suggesting that mast cells may be a
key mediator of the inflammatory processes
responsible for the condition.90-95  In addition, bladder
biopsies from patients with IC had a significantly
elevated histamine content compared with the control
group.94  In an analysis of biopsy samples from patients
in the Interstitial Cystitis Database, Tomaszewski et
al found that an increased mast cell count in the lamina
propria was significantly associated with nocturia in
a predictive model.96  These findings were most
notable in patients with Hunner’s ulcers.  Although
these studies implicate mast cells in the pathogenesis
of IC, there is no evidence that IC is the manifestation
of a primary mast cell disorder.11

Conclusions

Defects in the bladder surface and abnormally enhanced
permeability are common features of IC.  There is strong
evidence that these defects in the bladder mucosa may
increase epithelial permeability, initiating the cascade of

events that results in the symptoms of IC/PBS.  The
underlying factors that cause abnormalities in the
bladders of patients with IC have not yet been fully
elucidated, but emerging research focusing on THP, APF,
and bladder surface sensitization as causal factors
appears promising.  The large amount of data
demonstrating an abnormal increase in urothelial
permeability suggests the bladder epithelium as a
therapeutic target.  Further investigation is needed to
enhance our understanding of this common and
potentially debilitating condition.
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